Liz & Glyn Wainwright

Novelist & Scriptwriter shares with a Scientist & Researcher

Liz & Glyn Wainwright

Link

Fructose Has Different Effect Than Glucose On Brain Regions That Regulate Appetite

Jan. 1, 2013 — In a study examining possible factors regarding the associations between fructose consumption and weight gain, brain magnetic resonance imaging of study participants indicated that ingestion of glucose but not fructose reduced cerebral blood flow and activity in brain regions that regulate appetite, and ingestion of glucose but not fructose produced increased ratings of satiety and fullness, according to a preliminary study published in the January 2 issue of JAMA.

JAMA and Archives Journals (2013, January 1). Fructose has different effect than glucose on brain regions that regulate appetite.

Fructose Has Different Effect Than Glucose On Brain Regions That Regulate Appetite

Link

Effects of Fructose vs Glucose on Regional Cerebral Blood Flow in Brain Regions Involved With Appetite and Reward Pathways

Kathleen A. Page, MD; Owen Chan, PhD; Jagriti Arora, MS; Renata Belfort-DeAguiar, MD, PhD; James Dzuira, PhD; Brian Roehmholdt, MD, PhD; Gary W. Cline, PhD; Sarita Naik, MD; Rajita Sinha, PhD; R. Todd Constable, PhD; Robert S. Sherwin, MD
JAMA. 2013;309(1):63-70. doi:10.1001/jama.2012.116975

Importance  Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety.

Objective  To study neurophysiological factors that might underlie associations between fructose consumption and weight gain.

Design, Setting, and Participants  Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design.

Main Outcome Measures  Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion.

Results  There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (−5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P = .01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P < .05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex (P < .05 significance threshold, FWE whole-brain corrected). In whole-brain voxel-level analyses, there were no significant differences between direct comparisons of fructose vs glucose sessions following correction for multiple comparisons. Fructose vs glucose ingestion resulted in lower peak levels of serum glucose (mean difference, 41.0 mg/dL [95% CI, 27.7-54.5]; P < .001), insulin (mean difference, 49.6 μU/mL [95% CI, 38.2-61.1]; P < .001), and glucagon-like polypeptide 1 (mean difference, 2.1 pmol/L [95% CI, 0.9-3.2]; P = .01).

Conclusion and Relevance  In a series of exploratory analyses, consumption of fructose compared with glucose resulted in a distinct pattern of regional CBF and a smaller increase in systemic glucose, insulin, and glucagon-like polypeptide 1 levels.

Fructose & Obesity – JAMA Report